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TWO TRITERPENES FROM PALIURUS RAMOSISSIMUS 

SHOEI-SHENG LEE,+ CHENG-JEN LIN, and KARIN C. LIU 

School of Pharmary, College of Medicine, National Taiwan University, 
1 ]en-Ai Road, Sec. I, Taipei 100, Taiwan, Republic of China 

ABSTRACT.-TWO additional triterpenes, 24-hydroxyceanothic acid and 27-hydroxy- 
ceanothic acid, were isolated as dimethyl esters 2 and 4 from the roots of Palzurtlr ramosissimw. 
Their structures were determined by correlation with ceanothic acid E51 and spectral analysis in- 
cluding nOe and COLOC. Compound 4 is a new triterpene, while 2 is identical to granulosic 
acid dimethyl ester. 

A recent report described the characterization of two new triterpene glucosides ( l ) ,  
ceanothic acid 28p-glucosyl ester and isoceanothic acid 28p-glucosyl ester, from the 
stem barks of Paliurus ramsissirnus Poir. (Rhamnaceae), a Taiwan folk medicine used in 
the treatment of toothache and abdomen ache. Here we report the separation and struc- 
ture elucidation of two additional ceanothic acid analogues, 24-hydroxyceanothic acid 
and 27-hydroxyceanothic acid, isolated from the roots, as their dimethyl esters. 

The EtOH extract of the powdered roots of P .  ramsissirnus was fractionated into n- 
C6HI4-soluble, CHC13-soluble, EtOAc-soluble, n-BuOH-soluble and H,O-soluble 
fractions. Partitioning the CHC13-soluble fraction between 1% NaOH and CHCI, al- 
lowed separation of acidic compounds (aqueous layer) and neutral compounds (CHCI, 
layer). The acidic components, obtained as a precipitate while acidifying the aqueous 
layer, were then separated by repeated Si gel cc which resulted in the isolation of 
ceanothic acid, betulic acid, and a mixture of ceanothic acid 151 and two components 1 
and 3. We attempted to separate 1 and 3, but only a very small amount of pure 1 was 
obtained. To facilitate the separation, the mixtures of 1,3 ,  and 5 were methylated with 
CH,N,, and the structures of 1 and 3 were characterized as their corresponding di- 
methyl esters, 2 and 4. 

Ceanothic acid dimethyl ester 161, mp 224-226", [MI+ at rnlz 5 14 (C3,H5,05), 
shows two 0-methyl signals at 6 3.65. Other than this difference, the proton signals of 
ceanothic acid E51 and 6 were almost superimposable (Table 1). The structure of 6 was 
confirmed by its physical data, identical with those of ceanothic acid 0,O-dimethyl 
ester prepared from 5 by reaction with CH,N2. The 13C-nmr spectrum of 6 was as- 
signed by correlation with that of ceanothic acid (1) and is shown in Table 2. 

1 R=H, R'=OH, R2=H 
2 R=Me, R'=OH, R2=H 

4 R=Me, R'=H, R2=OH 
5 R = R ' = R ~ = H  
6 R=Me, R'=R2=H 

3 R=R'=H,  R ~ = O H  
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4 

65.7d 
175.2s 

85.2 d 
43.4s 
57.0d 
18.5 t 
35.3t 
42.5s 
46.1 d 
49.7s 
23.8 t 
25.4 t 
39.5 d 
46.8s 
24.0 t 
33.3 t 
56.5 s 
50.0d 
46.9d 

150.3s 
30.8 t 
36.8t 
30.9q 
19 . lq  
19.0q 
17.0q 
61.5 t 

176.7 s 
19.6q 

109.6t 
51.2q 

TABLE 1. 'H-nmr Data of Compounds 2 , 4 ,  and 6 in CDCI, (6 in ppm,/ in Hz). 

6, 

65.7 
175.2 

43.4 
57.0 

35.3 
42.5 

49.7 

46.8 

46.9 
150.3 

30.9 
19.1 

109.6 

Proton 

H-1 . . . . . . . . . .  
H-3 . . . . . . . . . .  
H-19 . . . . . . . . . .  
H-23 . . . . . . . . . .  
H-24 . . . . . . . . . .  

H - 2 5 . .  . . . . . . . .  
H-26 . . . . . . . . . .  
H-27 . . . . . . . . . .  

H-29 . . . . . . . . . .  
H,-30 . . . . . . . . .  
Hb-30 . . . . . . . . .  

Carbon 

6 

2.57s 
4.14 s 
2.95 m 
1.09s 
0.89 s 

1.04s 
0.90 s 
0.89 s 

1.64s 
4.70 brs 
4.57brs 

Compound 

2 l 4  
2.65s 
4.14 s 
2.94111 
1.29s 
4.18 d (  10.7, H,) 
3.26d(10.7, HA) 
1.14s 
0.87 s 
0.87 s 

1.64s 
4.70brs 
4.57brs 

2.59s 
4.25 s 
2.95 m 
1.09s 
0.90 s 

1.07 s 
0.91s 
4.1 1 d ( 12.4) 
3.76 d ( 12.4) 
1.64s 
4.70 br s 
4.57brs 

TABLE 2. '3C-nmr Data of Compounds 2,4 ,  5 and 6 (6 in ppm).' 

c - 1  . . . . . . . .  
c-2 . . . . . . . .  

c -3  . . . . . . . .  
c-4 . . . . . . . .  
c-5 . . . . . . . .  
C-6 . . . . . . . .  
c-7 . . . . . . . .  
C-8 . . . . . . . .  
c-9 . . . . . . . .  
c- 10 . . . . . . . .  
c-11 . . . . . . . .  
c- 12 . . . . . . . .  
C-13 . . . . . . . .  
C- 14 . . . . . . . .  
C- 15 . . . . . . . .  
C- 16 . . . . . . . .  
C- 17 . . . . . . . .  
C- 18 . . . . . . . .  
C- 19 . . . . . . . .  
c-20 . . . . . . . .  
c-2 1 . . . . . . . .  
c-22 . . . . . . . .  
C-23 . . . . . . . .  
C-24 . . . . . . . .  
C-25 . . . . . . . .  
C-26 . . . . . . . .  
C-27 . . . . . . . .  
C-28 . . . . . . . .  
C-29 . . . . . . . .  
C-30 . . . . . . . .  
ZXOCH, . . . . .  

5 

67.2d 
177.9s 

85.Od 
43.9s 
57.2d 
19.2 t 
34.9 t 
43.7 s 
45.2d 
49.7 s 
24.4 t 
26.4 t 
39.3 d 
42.3 s 
30.7 t 
33.1 t 
56.8s 
50.1 d 
47.7 d 

152.4s 
31.5 t 
37.6t 
31.6q 
20.1 q 
19.0q 
17.1 q 
15.2q 

178.7 s 
19.7 q 

109.6 t 

Compound 

6 

65.6d 
175.1s 

84.9d 
43.3s 
56.7 d 
18.5 t 
34.1 t 
42.9s 
44.6d 
49.5 s 
2 3 . 6 ~  
25.5 t 
38.7 d 
41.7s 
29.9 t 
32.3 t 
56.6s 
49.6d 
47.0d 

150.3 s 
30.8 t 
36.9 t 
30.8q 
19.1 q 
19.0q 
18.5 q 
16.5 q 

176.5 s 
19.4 q 

109.4 t 
51 . lq  

2 

64.9d 
174.8s 

85.4d 
47.9s 
56.9d 
1 7 . 8 ~  
34.5 t 
42.9s 
44.9d 
49.9 s 
23.7 t 
25.5 t 
38.7 d 
41.6s 
29.9 t 
32.3 t 
56.6 s 
49.6d 
47.0d 

150.3 s 
30.7 t 
36.9 t 
24.5q 
66.6 t 
19.0q 
18.4 q 
16.5 q 

176.7 s 
19.4 q 

109.5 t 
51 . lq  

COLOC data of 4 I 

1.07(H-25) 
2.59(H-1),4.14(H-3), 
3.65 (2-OMe) 

0.90(H-24), 1.09(H-23) 
1.07 (H-25), 1.09 (H-23) 

0.91 (H-26) 
0.91 (H-26) 

1.07(H-25) 

0.91(H-26) 

4.57 (H-30) 
1.64(H-29) 

0.90 (H-24) 
1.09 (H-23) 

1.64(H-29) 

'Compounds 2 , 4 ,  and 6 were measured in CDCI, while 5 was measured in C,D,N. 
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Compound 2 ,  mp 237.5-238.5', showed themolecularionat mlz 530.3605, cor- 
responding to the formula C3&,06 (calcd 530.3607) with one more oxygen atom 
than that of 6. The 'H-nmr spectrum of 2 is similar to that of 6 and only a few differ- 
ences are observed (Table 1). Compound 2 shows five methyl signals, one fewer than 6 ,  
and an additional AX coupling system at 6 4.18 and 3.26 (/= 10.7 Hz). These differ- 
ences are also reflected in the 13C-nmr spectra, in which a methyl signal of 6 is replaced 
by a hydroxylated methylene signal (6 66.7) suggesting that 2 is a hydroxyceanothic 
acid. 

The 13C-nmr data of 2 and 6 are very similar, and the carbon with the largest chem- 
ical shift difference is assigned to C-4 (A6 2 4  4.6 ppm). Consequently, the hydroxyl- 
ated position must be either C-23 or C-24. This substitution will cause a f3 effect on C- 
4, which accounts for the downfield shift (2). The location of this hydroxymethylene 
was confirmed by nOe studies (Figure 1). 

R=COOMe 

FIGURE 1. NOe's (96) and conformation of 2 in ring A. 

The similarity of the 'H-nmr spectra of 2 and 6 allows the assignment of H- 1 and 
H-3 of2  to62.65 and4.25, respectively. IrradiationofH-1 (s, 62.65)enhancedH-25 
(s, 6 1.14). Upon irradiation of H-3 (s, 6 4.25), a methyl singlet at 6 1.29 was en- 
hanced. This study indicated the presence of a methyl group (C-23) at C-4a and 
suggested that the hydroxyl group was at C-24. The AX methylene protons at 6 3.26 
(A)and4.18(X)(Jm= 10.8)wereenhanced byirradiationofH-23 (6 1.29)andH-25 
(6 1.14), respectively. These data also indicate a rigid orientation of the methylene pro- 
tons. This rigid conformation probably results from an intramolecular H-bond between 
3-OH and 24-OH. This postulation is supported by a broad absorption at 3400 cm-' 
in the ir spectrum (3). Without this interaction, the 0-H appears as a sharper peak, at 
3500 cm-', in 4 and 6. 

These data taken together, and its identity to an authentic sample ('H n m r ,  tlc and 
mp) of granulosic acid dimethyl ester (4), established 2 as 24-hydroxyceanothic acid di- 
methyl ester. 

Compound 4, mp 253.5-255.0", showed the molecular ion at m h  530.3640, cor- 
responding to the formula C3+&6 (calcd 530.3607). The 'H-nmr spectrum o f 4  is 
very similar to that o f 6  except for the absence of a methyl group and the presence of an 
additional AB quartet at 6 4.11 and 3.76 (/= 12.4 Hz). These data suggest 4 to be 
another hydroxyceanothic acid, an isomer of 2. NOe studies (Figure 1) indicate four 
methyl signals at 6 1.09 (H-23), 0.90 (H-24), 1.07 (H-25), and 0.91 (H-26). The 
methyl singlet appearing at relatively low field (6 1.64) was assigned to H-29 by corre- 
lation with that of 2 or 6. These data indicate C-27 or C-28 as the hydroxylated posi- 
tion. 

The COLOC spectrum of 4 located the signals of C-7 and C- 14 at 6 35.3 (t) and 
46.8 (s), respectively, based on their three-bond couplings to H-26 (6 0.91). This 2D 
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spectnunalsolocatedC-l(665.7), C-2(6 175.2), C-4(643.4),C-5(657.0), C-lO(6 
49.7), C-19 (6 46.9), C-20 (6 150.31, C-23 (6 30.9), C-24 (6 19.11, and C-30 (6 
109.6) via the couplings with the protons of two- and three-bond distance as shown in 
Table 2. Using these assignments as markers and comparing them with the 13C-nmr 
data of 6 enabled complete assignment of the 13C-nmr of 4 (Table 2). These data indi- 
cate that carbon signals of ring E in 4 are almost identical to the corresponding signals 
in 6, while some of the carbon signals of rings B, C, and D show differences among 
them [ A 6 6 =  - 1.2 (C-7), -0.3 (C-8), 1.5 (C-9), 0.8 (C-13, 5.1 (C-14), -5.9 (C- 
IS), 1.0 (C-16), ring E: A 6 6 =  -0.1 (C-17), -0.1 (C-19), 0.0 (C-21), -0.1 (C- 
22), 0.2 (C-28)}. These correlations require that both compounds possess the same sub- 
stituent at C-17 (-COOMe) but a different substituent at C-14. Thus, C-27 is a hy- 
droxymethylene. The hydroxyl group causes a p and a y effect on C-  14 and C- 15, re- 
spectively, accounting for the large shifts indicated above (2). Consequently, 4 is 27- 
hydroxyceanothic acid dimethyl ester. 

24-Hydroxylated or 27-hydroxylated triterpenes have been isolated from several 
plants including soyasapogenol A (24-hydroxylated) from Glycine m x  Merill (5), and 
senegenin I1 (27-hydroxylated) from Polygala sp. (6). Most of these triterpenes are the 
oleanane type. Our study reveals that the ceanothane type also possesses such modifica- 
tions. Other analogues are expected, and the isolation of these relatively minor and 
polar natural products is still in progress. 

EXPERIMENTAL 
F " T  MATERIAL AND 1NSTRUMENTATION.StemS and roots Of P. rumosiJJimrcr were COhCted 

from the mid-west seashore of Taiwan in July 1988. A voucher specimen was deposited in the herbarium of 
the School of Pharmacy, National Taiwan University. Melting points were measured on a Fisher-Johns 
melting point apparatus and not corrected. Optical rotations were measured on a Jasco DIP-181 digital 
polarimeter. Ir spectra were recorded on a Perkin-Elmer 1760-X Infrared FT spectrometer. Eims were re- 
corded on a Finnigan Mat 4500 series gcms and on a JEOL JMS-HX 110 mass spectrometer. The 'H-nmr 
and I3C-nmr spectra were recorded on a Bruker AM-300 spectrometer. They were measured in CDCI, or 
C,D,N using each solvent peak as internal standard. In the COLOC experiment, a 1-sec delay was allowed 
between each scan, and the coupling constant was optimized for]= 8 Hz. The 2D nmr map consisted of 
5 12 X 1K data points, each composed of 320 transients. 

EXTIL~CTON AND ISOLATION.-Dried ground powders of the roots (16.6 kg) were macerated with 
95% EtOH (42 liters X 3) at 40". The EtOH solution was condensed under reduced pressure to about 722 
g of EtOH extract. The extract was then triturated with n-C6H14 (3 liters X 3, 26 g extract), CHCI, (2 li- 
ters X 3, 277 g extract) and H 2 0  (1 liter X 2, 300 g extract). Part ofthe CHCI3-soluble fraction (120 g) was 
triturated with 2% citric acid to separate alkaloids. The residue was dissolved in CHCI, (1 liter) and par- 
titioned with 1% NaOH (500 ml X 2). The CHCI, layer(9.64 g), containing neutral and very nonpolaral- 
kaloids, was set aside, and the aqueous layer was acidified with 1% aqueous HCI to pH 3 to precipitate the 
acidic components (88 g). Part of the precipitate (40 g) was separated by a Si gel column (400 g, 70-230 
mesh) eluted with MeOWCHCI, from 5% to 30% stepwise to give ceanothic acid 15J (8.90 g), a mixture 
of 1 and 5 (3.10 g, fraction A), a mixture of 1 and 3 (3.27 g, fraction B) and other more polar substances. 
Repeated Si gel cc of fraction B yielded 1 (1.05 g) and mixture of 1 and 3 (300 mg) (fraction C). 

Fraction A (0.82 g) dissolved in MeOH (20 ml) was treated with ethereal CH2N, freshly prepared 
from 2.14 g of Diazald and kept at 4" overnight. After removing solvent, the residue (1.04 g) was separated 
on a Si gel column (42 g, 230-400 mesh) eluted with CHCI, and 0.5% to 2% MeOH stepwise to give 117 
mg of 2 and 4 10 mg of 6. 

CH2N, freshly prepared from 0.5 3 g of Diazald was added to fraction C ( 15 3 mg) dissolved in MeOH 
(10 ml) and the resultant solution was kept at 4" overnight. After removing solvent, the residue (145 mg) 
was separated on a Si gel column (7 g, 230-400 mesh) eluted with CHCI, and 0.5% to 2% MeOH stepwise 
to give 17 mg of 2 and 20 mg of 4. 

Ceanothic acid 151.-Mp 333-335" from MeOH; [a]24D +38" (e= 0.8, MeOH), ir (KBr, cm-') v 
max 2500-3500 (m, COOH, OH), 1690 (C=O), 1640and 890 (C=CH2); 'H nmr see Table 1; I3C nmr 
see Table 2. 

CeanothicariddimethylesterI6].-Mp 224.0-226.0" from MeOH; 1aJ2*~ +41.4" (e= 1.0, CHCI,); 
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ir (KBr, cm-') Y max 3540 (br m, OH), 2960 (s), 1720 (s, C=O), 1645 and 890 (C=CH,), 1180 (br 9, 
1050 (br s); eims mlz (rel. int. %) [MI+ 5 14 (calcd for C32H,,05)(3), [M - OMe)+ 483 (3), 465 (3), 263 
(22), 204 (30), 189(20), 175 (50), 173 (38), 147 (32), 133 (32). 121 (70), 103 (SO),  69(100); 'H nmrsee 
Table 1; I3C nmr see Table 2. 

24-Hydroxyr~anotbic arid dimethyl ester [2].-Mp 237.5-238.5' from MeOH; [a]24D + 5  1.5" 
(c= 1.0, CHCI,); ir (KBr, cm-') Y max 3400 (br m, OH) 2960 (s), 1725 (s, C=O), 1645 and 890 
(C=CH,), 1200 (s), 1180 (br s), 1050 (br 5); hrms m/z [mf 530.3605 (calcd for C32H5006, 530.3607); 
eims mlz (rel. int. %) 498 (8), 273 (45), 262 (69). 2 19 (95), 203 (75), 189 (loo), 187 (4% 175 (63), 173 
(40), 147 (IO), 133 (38), 12 1 (30), 119 (65), 107 (58), 105 (60); 'H nmr see Table 1; 13C nmr =Table 2. 

27-Hydroxyccanotbirarid dimethyl ertm [4].-Mp 253.5-255' from MeOH; [a]24D +-24.0' (c= 1.0, 
CHCI,); ir (KBr, cm-') Y max 3500 (br s, OH), 2960 (s), 17 10 (s, C=O), 1645 and 890 (C=CH,), 1200 
(s), 1180 (br s), 1050 (br s); hrms [MI+ m/z 530.3640 (calcd for C3,HS0O6. 530.3607), [M - OMel+ 
499.3402 (calcd C31H4705, 499.3423); eims m/z (rel. int. %) 500 (25), [M - OMe]+ 499 (loo), 485 (6). 
439(42),421(20), 233(9), 2 0 l ( l l ) ,  189(12), 187(22), 175(17), 173(16), 147(8), 133(11), 121(18), 
119 (17). 107 (17), 105 (18); nOe data H-1 to H-25 (4%), H-3 to H-23 (6%), H-23 to H-3 (20%), H-23 

'H nmr see Table 1; "C nmr see Table 2. 
to H-24 (4%), H-25 to H-24 (16%), H-25 to H-26 (16%), H-26 to H-25 (12%), H-26 to H-13 (17%); 
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